Cape buffalo mitogenomics reveals a Holocene shift in the African human–megafauna dynamics

RASMUS HELLER,* ANNA BRÜN-ICHE-OLSEN† and HANS R. SIEGISMUND*
*Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark, †School of Zoology, University of Tasmania, Private Bag 5, Hobart, Tas. 7001, Australia

Abstract

Africa is unique among the continents in having maintained an extraordinarily diverse and prolific megafauna spanning the Pleistocene–Holocene epochs. Little is known about the historical dynamics of this community and even less about the reasons for its unique persistence to modern times. We sequenced complete mitochondrial genomes from 43 Cape buffalo (Syncerus caffer caffer) to infer the demographic history of this large mammal. A combination of Bayesian skyline plots, simulations and Approximate Bayesian Computation (ABC) were used to distinguish population size dynamics from the confounding effect of population structure and identify the most probable demographic scenario. Our analyses revealed a late Pleistocene expansion phase concurrent with the human expansion between 80 000 and 10 000 years ago, refuting an adverse ecological effect of Palaeolithic humans on this quarry species, but also showed that the buffalo subsequently declined during the Holocene. The distinct two-phased dynamic inferred here suggests that a major ecological transition occurred in the Holocene. The timing of this transition coincides with the onset of drier conditions throughout tropical Africa following the Holocene Optimum (~9000–5000 years ago), but also with the explosive growth in human population size associated with the transition from the Palaeolithic to the Neolithic cultural stage. We evaluate each of these possible causal factors and their potential impact on the African megafauna, providing the first systematic assessment of megafauna dynamics on the only continent where large mammals remain abundant.

Keywords: Cape buffalo, climate change, demographic history, human activities, megafauna

Received 16 January 2012; revision received 9 April 2012; accepted 23 April 2012

Introduction

The persistence of a diverse and dominant megafauna to the present day in Africa is in sharp contrast to the late Pleistocene extinction of this community on other continents (Barnosky et al. 2004). Factors such as climate change, human hunting, disease epidemics and ecosystem collapse conceivably influenced megafauna dynamics to various degrees on different continents and much effort has been applied to establish their diverse impact on different continents (Barnosky et al. 2004; Nogués-Bravo et al. 2010; Lorenzen et al. 2011). Not only might the successful evaluation of these drivers of historical megafauna population dynamics reveal important aspects of biogeographical history, it will also aid the understanding of the ecological background for the extinction processes within this prominent guild. The ‘African anomaly’ with respect to the persistence of a diverse megafauna to the present day has been attributed to the longer period of co-existence of humans and megafauna on this continent (Martin 1984), but there is little direct evidence of benign human-megafauna relations in Africa. Studies of the Pleistocene extinctions previously relied on the fossil record, but an increasing number of studies use genetic data to infer species population size dynamics, which can then be compared to known periods of climate change and human
demographics or presence/absence in a given region to infer causal relations (e.g. Shapiro et al. 2004; Goossens et al. 2006; de Bruyn et al. 2009; Campos et al. 2010). This approach holds promise in assessing the susceptibility of the megafauna to the two most prominent threats to its persistence, climate change and human activities.

As opposed to the other continents, humans (the term ‘humans’ is used in the sense of anatomically modern humans throughout) have co-existed with the African megafauna for hundreds of thousands of years. African humans certainly hunted the megafauna in the late Pleistocene (Faith 2008; Dusseldorp 2010), but the ecological effect of this is unknown. The fact that humans co-existed with the buffalo for a long time in Africa allows us to test the hypothesis of benign ecological relations by comparing the dynamics of both species throughout the late Pleistocene and the Holocene. Comparisons over such an extensive period are not possible on other continents because of the late arrival of modern humans elsewhere.

The purpose of this study was to evaluate the effect of humans and climate change on the Cape buffalo, a large and widespread ungulate distributed at relatively high densities throughout most of eastern and southern Africa (Sinclair 1977). The buffalo is a convenient model for the effects of climate change and human activities, as it is a Palaeolithic quarry species (Faith 2008; Dusseldorp 2010) and has been shown to be susceptible to drought (Ogutu et al. 2008), which is the most ecologically important climate variable in tropical Africa. Previous studies using autosomal microsatellites and fragments of the mitochondrial D-loop fragments have found genetic signals of both a population expansion (Van Hooft et al. 2002) and a population decline (Heller et al. 2008), which appears contradictory. However, the expansion was inferred to have occurred in the Pleistocene and the decline in the Holocene, so it is possible that the buffalo has gone through a two-phased dynamic similar to the steppe bison (Shapiro et al. 2004; Drummond et al. 2005). Tentative evidence from two other African savannah-adapted mammals—the savannah elephant and the baboon—has shown that they also suffered severe population decline in the Holocene or late Pleistocene (Storz et al. 2002; Okello et al. 2008), raising the possibility that this was a time of a community-wide collapse.

We present here the first complete mitochondrial genome (mitogenome) sequences from the Cape buffalo. Recent studies have shown that mitogenome sequences may reveal the aspects of history not discernible by analysing only smaller regions such the D-loop (Morin et al. 2010; Wang et al. 2010). Although generally assumed to be a single, non-recombining locus, complete mitogenomes provide more variable sites, hence more information to be utilized in the analyses of demographic history. Specifically, the faster accumulation of substitutions in the complete mitogenome compared to mitogenome fragments provides improved time resolution for historical inferences using molecular clock approaches. It should be noted, though, that the inclusion of several unlinked genetic markers would improve the demographic inferences even further (reviewed in Ho & Shapiro 2011).

Most methods aiming at inferring population size dynamics by applications of coalescent theory make simplifying assumptions about the biological system, notably about the underlying population structure. Although the potentially confounding effect of population structure on inferences of population size changes has been made clear in a number of mainly theoretical studies (e.g. Wakeley 1999, 2000; Pannell 2003; Ray et al. 2003; Städler et al. 2009; Chikhi et al. 2010; Ho & Shapiro 2011), it is underappreciated in practical studies using real data. Essentially, when population structure does exist, the migration of genetic lineages among subpopulations can alter the expected waiting times between coalescence events upon which such methods rely to infer dynamics in population size. It is difficult to evaluate the confounding effect of population structure a priori, but one way of assessing it is by simulating data under different structural scenarios and comparing the inferences under these scenarios with the signal observed from the observed data. This approach was adopted in various ways in the present study, allowing us to evaluate the robustness of the inferences of population size dynamics presented here.

Materials and methods

Sampling and Laboratory procedure

Samples were collected from three localities within the Cape buffalo distribution: Omo Valley in Ethiopia (n = 7); Masai Mara in Kenya (n = 20) and Chobe/Hwange national parks in Botswana/Zimbabwe (n = 16). This sampling scheme was chosen in part to avoid strictly ‘local’ sampling as pointed out by e.g. Städler et al. (2009) and Chikhi et al. (2010). Details about sample collection methods can be found in Simonsen et al. (1998). Two primer sets were designed to amplify the complete mitochondrial genome for the buffalo by aligning 20 published mitogenomes from a range of bovid species using the built-in alignment function in GENETOP (Drummond et al. 2010) with the 70% similarity cost matrix. Conserved sequence regions that were amenable for primer design were identified by eye and by using the Primer3 software (Rozen & Skaltsky 2000). The
primer sequences are as follows: (1_F: GAGCCTTCA AAGCCTAAGC; 1_R: CGGATTTCCNGTGGRCGC; 2_F: CAGARCGYCTAAAGC CGG; 2_R: CGGGAAAG TAGATTTAAAGGC). The two fragments were 7448 nt and 10 912 nt long, respectively, and overlapped by ~200 nt and 1800 nt at either end. Long-range PCRs were carried out using the Platinum® Taq High Fidelity PCR kit (Invitrogen). PCR products were run on agarose gel to verify the length of the product. Amplicons with a clear band at the expected length were PCR purified using the MSB Spin PCRapace kit (STRATEC) and sent for library preparation and sequencing at BGI, Shenzhen, China. Here they were Illumina sequenced using paired-end technology. Raw sequence data were assembled using the de novo assembly algorithm of SOAPDENovo (Li et al. 2010) with parameters ‘–k 27 –d 1’ and, for some samples that could not be de novo assembled, by reference-guided assembly using one of the de novo assembled sequences as a reference in GENEIOUS with the default parameters under medium sensitivity. For the reference-assembled mitogenomes, we used several different reference mitogenomes to evaluate the effect of this on the final sequence. All assembled genomes were blasted and aligned to existing buffalo mitochondrial DNA sequences to check them for inter-species contamination. We also aligned the assembled mitogenomes to reference cattle (NC_006853) and water buffalo (NC_006295) mitogenomes to check them for dubious indels or other potential artefacts. The assembled mitogenomes were annotated according to the above published reference mitogenomes from cattle and water buffalo.

Demographic analyses

The assembled mitogenomes were partitioned into three regions: (i) protein-coding sequence, consisting of 12 protein-coding genes ND1, ND2, COX1, COX2, ATP8, ATP6, COX3, ND3 ND4L, ND4, ND5 and CYTB (excluding the ND6 gene situated on the heavy strand); (ii) two rRNA genes s-rRNA and 1-rRNA; and (iii) the D-loop region. We also used a combined data alignment with these three regions concatenated into a single unpartitioned sequence. A more elaborate partitioning scheme where each gene was allowed a separate model of evolution was also explored. jmodeltest (Posada 2008) was used to evaluate the most appropriate model of evolution for each alignment and partition according to the Akaike Information Criterion. As recombination can bias inferred genealogies (Schierup & Hein 2000), we tested for the presence of recombination in the mitogenomes using the GARD and SBP methods (Pond et al. 2006) implemented at the DataMonkey webserver.

To calibrate the substitution rate of the partitions, we aligned the buffalo partitions to published cattle mitogenome NC_006853 from which the divergence time of the bubalina subfamily has recently been estimated based on the fossil record (7.7 mya (MacEachern et al. 2009)). These alignments were analysed using BEAST (Drummond et al. 2005, 2006) under the assumption of a relaxed (log-normal distributed) molecular clock. From this, we obtained the age of the Cape buffalo genealogy (mean and 95% HPD) and used this node as a prior to calibrate subsequent BEAST analysis involving the buffalo demographic history. We used the extended Bayesian skyline plot (EBSP (Heled & Drummond 2008)) demographic tree prior in BEAST and ensured convergence by running the program long enough to get effective sample sizes of at least 500 for all parameters. The EBSP was developed to accommodate multilocus data, but it was chosen here because we wanted to estimate the unique EBSP parameter PopulationSizeChanges (PSC; Fig. S1, Supporting information), which quantifies the number of demographic changes most in agreement with the data. The two alternative Bayesian skyline methods currently available in BEAST (the Bayesian skyline plot, BSP (Drummond et al. 2005) and the Gaussian Markov random field skyline, GMRF (Minin et al. 2008)) were also explored to evaluate the effect of the skyline demographic prior, and the inferred history proved very similar across methods (Fig. S2, Supporting information). Different concatenation schemes were explored by running (i) a concatenated data set including all three partitions, but allowing substitution models to vary between the partitions; (ii) each of the three partitions by itself (not concatenated); (iii) a concatenated data set allowing substitution models to vary between each gene; and (iv) a pooled data set applying the same substitution model across the whole length of sequence. Under all concatenation schemes, the outgroup alignment was run first and the root posterior of the Cape buffalo genealogy from the outgroup analysis was used as calibration prior for the EBSP analyses. A strict molecular clock was assumed throughout the following, as exploratory runs did not support a relaxed clock.

To evaluate the effect of human activities and climate change on the inferred buffalo history, we collected proxy data for these two factors. An estimate of sub-Saharan human population sizes through time was kindly provided by Quentin D. Atkinson (Atkinson et al. 2008). As precipitation (rather than temperature) is the most ecologically important climatic variable in tropical Africa (Ogutu et al. 2008), we obtained an estimate of the amount of yearly precipitation over time from sediment records from the Lake Tanganyika basin in Central Africa (Tierney et al. 2010). Finally, we collected and analysed a data set of indigenous Ethiopian cattle (Dadi et al. 2009) to compare the population...
dynamics of livestock with that of the buffalo (Supporting information).

We applied a correction factor for the time points in the skyline plot functions to account for substitution rate decay over evolutionary time scales (Ho et al. 2005). For this we used the time-dependent correction factor from Gignoux et al. (2011) to estimate the ratio of short-term to long-term rate at each time point inferred under the skyline models. This ratio was used to re-calculate the coalescent intervals in the skyline functions by dividing each interval with the appropriate ratio, arriving at a new calibrated set of time points for the skyline plots. Although strictly only applicable for human mitogenomes, we used this calibration as a general approximation for correcting the decay of rates for the buffalo data as well as the human data in Figs 1, 3, S2 and S3 (Supporting information).

Simulated scenarios and comparison with the observed data

Because different types of demographic processes can give rise to apparent population size changes in a skyline plot (Supporting information), and because we wanted to test the robustness of skyline plot methods, we used data simulations to explore the skyline signal of a number of competing demographic scenarios. Two series of scenarios were considered: one (four scenarios; Sce1a–d) entailing different histories of population size change and one (three scenarios; Sce2a–c) consisting of different types of structure with or without any changes in the total population size (Fig. 2, Supporting information). A number of additional scenarios were explored, but are not included in the study because they did not provide a good fit to the observed data.

Fig. 1 Comparing buffalo, human and cattle population size and precipitation through time. (a) Extended Bayesian skyline plot (EBSP) from buffalo data (blue) with Bayesian skyline plot (BSP) of sub-Saharan humans (red; modified from Atkinson et al. 2008)). (b) EBSP of African cattle (Dadi et al. 2009; black) and data on estimated precipitation patterns in Tanzania (Tierney et al. 2010; green). The skyline plots show mean effective female population sizes (bold lines) and 95% HPD intervals (thin lines). The time unit is kya (thousands of years before present). The buffalo EBSP is based on the unpartitioned data (see text for further details). The population size axis is on logarithmic scale; raw values from BEAST are in units of N_e^* and have been divided by generation time. Insert are two key historical events: the Last Glacial Maximum and the Neolithic period.
and were not concordant with the known history of the buffalo.

Scenario 1d was included as a ‘positive control’ to assess the ability of the EBSP to pick up a complex signal such as the one inferred from the real data. For each scenario, 100 data sets corresponding to the unpartitioned real data (43 samples, 16 400 bp evolving according to the HKY + G substitution model inferred with JMODELTEST using parameter values as inferred in BEAST) were simulated using Bayesian Serial SimCoal (BSSC (Chan et al. 2006)). This software was used because of its flexibility in model specification, the possibility of putting priors on model parameters and the ease of piping the output into ABCtoolbox (Wegmann et al. 2010; see below). The simulated data sets were analysed in BEAST using EBSPs, and plots depicting EBSP of each replication of the different scenarios were made using R. To further investigate the effect of sampling in the presence of population structure, we randomly subsampled 25 individuals from the full set of 43 one hundred times and did EBSP analysis on them. The resulting plots are shown in Fig. S4 (Supporting information).

Approximate Bayesian computation (ABC) analyses were performed to test the fit of the alternative scenarios mentioned above to the data. This entails simulating data under the different scenarios, extracting a suite of summary statistics from the simulated data and comparing the value of these statistics with the values of the same statistics calculated from the observed data (Beaumont 2010). The scenario yielding summary statistics most similar to those from the observed data is regarded as the most compatible with the data. We used the ABCestimator component of the ABCtoolbox package to assess the different scenarios and performed model selection by comparing the marginal density of each scenario. The summary statistics included in the analyses (following a selection procedure excluding tightly correlated and uninformative statistics) were the number of haplotypes, nucleotide diversity, Tajima’s D and the time of the most recent common ancestor (TMRCA). The values of these statistics in the observed data were calculated using DNASP (Rozas et al. 2003) for the first three and the mean estimate of the tree root height in BEAST for the latter. For each scenario, 10⁵ simulation steps were carried out, and we retained the best 5000 for the calculation of marginal density and P-value. Model selection was performed by computing Bayes factors based on the marginal densities of each scenario. The relative probability was calculated by combining the 5000 retained simulation steps from each scenario (total 35 000 retained simulation steps), sorting them by distance to the observed data set and calculating the proportion of each scenario among the top 7000 steps, following Pritchard et al. (1999).

The posterior distributions of the parameters \(N_0, N_1/N_2 \) (rinderpest bottleneck severity), \(N_0, T_3 \) and \(T_4 \) in scenario 1d (Fig. 2) were estimated to validate the inferred population size changes observed in the skyline plots. Parameters \(T_1 \) and \(T_2 \) are determined by known historical events and were fixed to known values (Table 3).

Results

Mitogenomic diversity

The 43 Cape buffalo mitogenomes were 16 357–16 361 bp in length (with the exception of a single Ethiopian individual, 9083, having a 74 bp deletion in the D-loop shortening the mitogenome to 16 285 bp) and have been submitted under GenBank accession numbers JQ235505–JQ235547. The mitogenomes consisted of 30 different haplotypes and had a nucleotide diversity of 0.0045 (Table 1). Tajima’s D was \(-1.25\), which was not significantly different from zero. No evidence of recombination was found in the mitogenomes. The inferred rate of change over the complete mitogenome using the divergence from cattle as calibration points was \(3.1 \times 10^{-2}\) per site per Myr (95% HPD: 2.4–4.0 \times 10^{-2}\), which is very close to the mean across mammals (3.3 \times 10^{-2}\) per site per Myr (Nabholz et al. 2012).
2008), but considerably slower than that of humans \((6.8 \times 10^{-2} \text{ site per Myr})\) externally calibrated (Endicott & Ho 2008)). This yielded a time since most recent common ancestor (TMRCA) of 110 kya (95\% HPD: 81–144 kya) for the Cape buffalo.

Inferred population size dynamics

The EBSP revealed a history of variable population size in the Cape buffalo with a notable expansion and decline phase, respectively (Fig. 1a). Skyline plots based on different partitioning schemes were very similar (Fig. S3, Supporting information), justifying the compatibility of the results derived from BEAST and the ABC analyses (where unpartitioned data were used). The first part of the history shows a general population expansion starting at the lower 95\% highest probability density (HPD) interval of the root age at \(C_2480\) kya, progressing until a peak population size \(C_248\) kya. From this time we observe a moderate decline accelerating to a rapid and precipitous decline within the last 5000 years. The 95\% HPD interval around the mean inferred population size was incompatible with a constant population size through time, and the posterior median for the parameter PopulationSizeChanges (PSC; representing the number of population size changes in the EBSP) was 3 with 95\% HPD 2–4, strongly rejecting a constant population size even though the prior on this parameter gave equal support to a constant vs. all non-constant population histories (all possible non-zero values of PSC). The three skyline plot methods (EBSP, GMRF and BSP) showed very similar trajectories, although the peak in population size was slightly older in the EBSP than under the other models (Fig. S2, Supporting information).

Comparison with simulated data

The scenarios on which simulations were based are shown in Fig. 2. The EBSPs based on the simulated data (Fig. 3) show that scenario Sce1d (the ‘positive control’) produced plots closely resembling the EBSP from the observed data, with scenarios Sce1c and Sce2c also capturing some aspects of the observed signal. None of the remaining scenarios yielded EBSPs visibly similar to the observed. The EBSP method was quite accurate in picking up the demographic signal encoded in the simulated data. Given that the EBSP method essentially integrates over all possible demographic functions, our results confirm that the method is evidently able to pick up a demographic signal in the type of data we have simulated (emulating mitogenomes). The structure scenarios yielded quite variable EBSP plots including signals of population expansion, decline and stability, and this underlines the potentially confounding effect of structure on demographic inference. Among the scenarios involving population structure, Sce2b overestimated the number of population size changes (Fig. S3, Supporting information). This demonstrates that structure can mimic population size changes and shows that structure must be of a certain age to leave a false signal of population size change, in agreement with Fig. 2a in Peter et al. (2010).

Approximate Bayesian Computation was carried out as a further test of the demographic scenarios. The same scenarios as above were evaluated, and the fit between simulated summary statistics under each scenario and those from the observed data are compared in Table 2. Scenario 1d was the best fit to the observed data with a \(P\)-value of 0.98 and a Bayes factor of 4.4 favouring this over the second best model (Sce1c). The main virtue of Sce1d compared to Sce1c appeared to be its ability to explain the relatively low number of haplotypes (30 haplotypes among 43 samples). A high number of identical haplotypes compared to other mismatch classes are indicative of a very recent bottleneck (when structure can be excluded). The posterior estimates of the times of demographic changes are shown in Table 3 and are in good agreement with the skyline plot results, confirming that the data are informative regarding these model parameters both under full likelihood methods and using summary statistics.

Discussion

Methodological evaluation

The list of studies using different varieties of skyline plots to infer historical population size dynamics is
growing fast, but many of these studies do not explicitly consider alternative demographic processes that may have given rise to the skyline signal. Particularly, it is well known that population structure can have a strong effect on the underlying genealogy, leaving a signal resembling that of a population decline. To our knowledge, our study is the first to perform BSP analyses on simulated data from a range of competing and plausible demographic scenarios. Other authors dealing with empirical data have addressed the issue of structure in other ways (e.g. Städler et al. 2009; Campos et al. 2010; Chikhi et al. 2010; Peter et al. 2010; Hoffman et al. 2011; Lorenzen et al. 2011). We affirm that a confounding effect of population structure on inferred skyline plots should routinely be examined, especially considering the popularity of these methods. We used simulations to assess the probability of alternative demographic and structural scenarios creating the genetic signal observed in skyline plots and in the summary statistics. None of the alternative scenarios considered here yielded signals resembling those in the observed data (Fig. 3). We also explored other variants of the main scenarios listed here, but none were a better fit to the data than those presented here. The use of simulations allowed us to exclude some of the most obvious alternative explanations for the observed pattern of genetic diversity, making us more confident that the skyline plots in Figs 1, S2 and S3 (Supporting information) are a good approximation of the actual historical dynamics of the Cape buffalo, not just artefacts of structure and sampling. Although not the main focus of this study, our EBSP analyses using controlled simulations revealed several interesting aspects concerning the precision and robustness of this method in inferring demographic history. Given the popularity of skyline plot methods, further simulation studies on this topic are warranted. We acknowledge that the shifting buffalo range contractions and expansions caused by human activities and climate change may have caused more complex changes over time in genetic structure and diversity than we were able to simulate (Excoffier et al. 2009; Arenas et al. 2011), but it was outside the scope of this study to incorporate such a level of complexity.

Table 2 Scenario overview and ABC results

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Marginal density</th>
<th>P-value</th>
<th>Relative probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sce1a</td>
<td>0.053</td>
<td>0.516</td>
<td>0.16</td>
</tr>
<tr>
<td>Sce1b</td>
<td>0.000</td>
<td>0.000</td>
<td>0.00</td>
</tr>
<tr>
<td>Sce1c</td>
<td>0.097</td>
<td>0.736</td>
<td>0.15</td>
</tr>
<tr>
<td>Sce1d</td>
<td>0.432</td>
<td>0.983</td>
<td>0.55</td>
</tr>
<tr>
<td>Sce2a</td>
<td>0.041</td>
<td>0.554</td>
<td>0.01</td>
</tr>
<tr>
<td>Sce2b</td>
<td>0.000</td>
<td>0.030</td>
<td>0.02</td>
</tr>
<tr>
<td>Sce2c</td>
<td>0.045</td>
<td>0.860</td>
<td>0.11</td>
</tr>
</tbody>
</table>
estimated; HPD, highest probability density.
NA, not applicable; parameter was fixed to a value and not
independent variable.

\[MT \]

\[N \]

\[† \]

The posterior estimates are based on the most probable
value.* The mode of the posterior distribution or the fixed value of
the parameter if not estimated.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Prior</th>
<th>Mode/value (^\dagger)</th>
<th>Posterior (^\ddagger) (95% HPD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_0)</td>
<td>10 000–500 000</td>
<td>110 156</td>
<td>55 190–167 080</td>
</tr>
<tr>
<td>(N_0/N_2)</td>
<td>0.02–0.10</td>
<td>0.087</td>
<td>0.056–0.100</td>
</tr>
<tr>
<td>(N_2)</td>
<td>1000–50 000</td>
<td>11 016</td>
<td>5520–16 709</td>
</tr>
<tr>
<td>(T_1)</td>
<td>NA</td>
<td>100</td>
<td>NA</td>
</tr>
<tr>
<td>(T_2)</td>
<td>NA</td>
<td>130</td>
<td>NA</td>
</tr>
<tr>
<td>(T_3)</td>
<td>3500–21 000</td>
<td>5898</td>
<td>3668–12 401</td>
</tr>
<tr>
<td>(T_4)</td>
<td>50 000–100 000</td>
<td>79 114</td>
<td>61 950–87 145</td>
</tr>
<tr>
<td>(M_0)</td>
<td>NA</td>
<td>0.0003</td>
<td>NA</td>
</tr>
</tbody>
</table>

\(^\dagger\) The mode of the posterior distribution or the fixed value of
the parameter if not estimated.
\(^\ddagger\) The posterior estimates are based on the most probable
demographic scenario, Sce1d. All times are in years; all
effective population sizes are in natural units.

It should be stressed that the time resolution of the
inferred demographic history is not sufficient to pin-
point the exact dates of demographic change points. Uncertainty about the calibration of divergence time
between the bovina and bubalina subfamilies and the
potential bias in using ancient calibration points to
inform on recent intraspecific rates of evolution both
influence the rate of the molecular clock assumed in the
historical inference (Ho et al. 2005; Endicott & Ho
2008). The latter source of bias was controlled by apply-
ing a correction factor for the decay of substitution rates
over evolutionary time (Gignoux et al. 2011). Also, we
note that our estimate for the TMRCA of the Cape buff-
alo (81–144 kya) agrees with that inferred assuming a
substitution rate calibrated from ancient DNA from a
closely related species (the bison; Shapiro et al. 2004)
and using a much larger Cape buffalo D-loop sample
(85–192 kya, data available from the authors). Overall,
however, we can hardly pinpoint demographic change
points with less than some thousand years of uncertain-
ty. This lack of temporal resolution precludes us from
tyling the inferred history to specific historical events with certainty (see below), a problem confronting
all studies attempting to correlate inferred events in
species histories with external events. We also acknowl-
dge that having more unlinked loci instead of the one
non-recombining sequence of the mitogenome would
significantly improve our demographic inference. The
mitogenome represents just one realisation of the coa-
lescent process and is restricted to the matriline. How-
ever, with regard to the Holocene decline, our
mitogenome results agree closely with previous results
from autosomal microsatellites (Heller et al. 2008).

**Cape buffalo demographic history I: reconciling
previous findings**

The sequencing of complete mitogenomes allowed us to
gain a more detailed insight into the demographic his-
tory of the Cape buffalo and shows that it is possible,
even using only modern DNA sequences, to infer com-
plex dynamics of demographic history. Collectively, our
beast analyses and the **ABC** procedure suggest that a
model including a Pleistocene expansion (starting
around 80 kya) followed by Holocene decline (starting
around 5 kya) and a bottleneck caused by the rinder-
pest epidemic in the late nineteenth century is the most
plausible among a range of biologically relevant scenar-
ios for the Cape buffalo. This dynamic reconciles previ-
ous findings (Van Hooft et al. 2002; Heller et al. 2008),
although we acknowledge that it is not necessarily sur-
prising to get discrepant demographic signals from
markers with different inheritance mode (as well as
between unlinked markers sharing inheritance mode).
We also found a genetic signal of the historically well-
documented rinderpest epidemic (references in Estes
(1991)), which has so far not been detectable using other
methods of demographic inference. Excoffier & Schnei-
der (1999) note how a recent bottleneck can erase or
mitigate the signal of an earlier expansion. This might
explain why tests based on Tajima’s D and Fu’s F fail
to find significant support for a Pleistocene expansion
in buffalo despite showing a tendency towards an
expansion signal.

**Cape buffalo demographic history II: explosive human
growth or climate change?**

Our results reveal two aspects of buffalo dynamics of
particular interest when compared with that of African
humans: a concordant increase in effective population
sizes of these two species from around 80–10 kya and a
radical divergence in the dynamics of the species from
around 5 kya onwards (Fig. 1). This divergence is
marked by the onset of explosive growth in the human
population size, a well-known feature of human demo-
graphic history (Atkinson et al. 2008, 2009; Barnosky
2008; Scheinfeldt et al. 2010; Gignoux et al. 2011; Soares
et al. 2012), and a correspondingly rapid decline in the
buffalo population size. The first phase of this interspe-
cies dynamic reveals that Palaeolithic humans did not
have an adverse impact on the buffalo, although they
certainly hunted the species on occasion (Faith 2008;
Dusseldorp 2010). On the contrary, humans and buffalo
both expanded by a factor of about five between 80 and
The Neolithic revolution.

The Neolithic revolution, the onset of a general aridification of Africa in the mid-Holocene may have caused increased mortality in the Cape buffalo. Although not as extreme as some periods of the Pleistocene (see precipitation history plot in Fig. 1), the Holocene has witnessed periods of considerable and quite rapid climate change (Mayewski et al. 2004; Thompson et al. 2006; de Bruyn et al. 2011). This applies particularly for Africa, which went through a very pronounced aridification following the relatively warm and wet Holocene Climatic Optimum ~9–5 kya (deMenocal et al. 2000; Thompson et al. 2002; Tierney et al. 2010). At this time, the previously savannah-covered Sahara region deteriorated into the desert we see today, and a number of large lakes and waterways in the region dried up completely. Underlying this general aridification are at least two specific events, the 5.9 kya and 4.2 kya events (Brooks 2006), which many sources identify as extremely sudden and pronounced drought periods. The latter has been termed as the ‘First Dark Age’ of human civilization and caused major upheaval in early cultures in the Middle East, Egypt, China and the Americas (deMenocal 2001). It was associated with extreme drought in the entire Nile catchment area and a temporary cessation of the flow of the Nile because of low lake levels along the course of the White Nile (Stanley et al. 2003; Williams & Talbot 2009). The Cape buffalo is known as one of the most water dependent of the savannah ungulates (Ogutu et al. 2008), and climate change in the Holocene was definitely severe enough to have had profound ecological consequences (Mayewski et al. 2004). The demographic history presented here is in agreement with the hypothesis that the mid-Holocene aridification of Africa posed a serious challenge for many drought-intolerant species of savannah ungulates (Heller et al. 2008).
The present evidence does not enable us to directly assess the contribution of these two possible causal factors for the buffalo population decline. One obvious argument against Holocene climate change as the sole causal agent is the fact that the above episodic droughts, although historically recorded as dramatic, were almost certainly not as pronounced as those recorded in the Pleistocene (Fig. 1), for example, associated with the Last Glacial Maximum ~26.5–19 kya (Wolff et al. 2011), a period where the buffalo population was still expanding. Therefore, there seems to be compelling evidence for at least some human contribution—quite possibly in concert with Holocene climatic perturbations—to the collapse of the Cape buffalo population in the Holocene. Under this scenario, the pressure from rapidly expanding human activities combined with the Holocene aridification, which although not the most severe recorded was certainly enough to affect the Cape buffalo, led to a negative population growth rate for the buffalo. It is even possible that the Holocene aridification drove humans and megafauna into closer contact around remaining water sources, hence forcing them to share the same fragmented habitat and throwing them into increased ecological competition in which the megafauna was bound to lose as human populations entered an explosive growth phase.

Shedding light on the African anomaly

Africa is key to understanding the global patterns, if such exist, of megafauna dynamics underlying the global mass extinction at the Pleistocene–Holocene transition. No other continent can provide as complete and extensive a record of human–megafauna co-existence as Africa. Yet, African megafaunal history remains severely understudied in comparison with its temperate and Arctic counterparts. This study provides evidence—beyond the mere persistence of megafauna diversity in Africa—of ecologically benign co-existence of Palaeolithic humans and a prominent member of the African megafauna, underlining that the ecological impact of humans in prehistory may have been complex and was certainly not uniformly harmful. The hypothesis of an ecological state transition from benign co-existence to human–megafauna competition following the Neolithic revolution is tantalizing and warrants further investigation.

Although still tentative, this study raises the possibility that the African megafauna underwent a population collapse equivalent to and roughly contemporaneous with that on other continents (Barnosky 2008). Hence, the history of the African megafauna may not be as exceptional as previously assumed, disregarding that the Holocene decline did not result in as many species extinctions as on other continents. Explanations for this aspect of the African anomaly must be speculative, but one possibility is that Africa offered more suitable refugia from human activities than other continents. Such refugia could stem from the vastness and physical heterogeneity of the African landmass within the species-rich tropics, or the existence of pathogens that precluded humans or domesticates from thriving in certain areas. The latter is still true as exemplified by the persistence of locally endemic livestock diseases such as animal trypanosomiasis and several others, making large tracts of otherwise attractive pasturelands in Africa unavailable to human settlement, a phenomenon without parallel on other continents.

It should be noted that genetic studies on the megafauna of other continents suggest that species may have responded idiosyncratically to climate change and human activities. For some species (elephant seal, musk ox, woolly rhino), climate change appears to be sufficient to explain their inferred dynamics (de Bruyn et al. 2009; Campos et al. 2010; Lorenzen et al. 2011), but for others (steppe bison, wild horse), a human contribution cannot be excluded (Drummond et al. 2005; Lorenzen et al. 2011). It remains an open question to what extent community-wide or continental patterns of megafauna response to climate change and human activities exist.

Ultimately, the only way to test this is to study more species in a comparative context. Although other members of the African megafauna have shown demographic histories compatible with a major ecological transition in the Holocene (Storz et al. 2002; Okello et al. 2008), more research is needed to establish whether the demographic history of the buffalo is representative of the community. Particularly, we do not yet know to what extent structure may have biased the few studies published on other African species. Future work will help to evaluate whether humans generally co-existed peacefully with the megafauna in the Palaeolithic Africa, and whether Holocene climate change or a human cultural evolution has been more influential in shaping the history of this community. As more genetic data become available, particularly multi-locus genomic data, it will hopefully be possible to carry out more accurate, community-wide inferences of demographic history.

Acknowledgements

The authors would like to thank Quentin D. Atkinson for providing data regarding the human demographic history. Peter Arctander is thanked for providing tissue samples. Three anonymous referees are thanked for helpful suggestions that improved the manuscript in several ways. This study was funded by the Danish International Development Agency.
References

Campos P, Willerslev E, Sher A et al. (2010) Ancient DNA analyses exclude humans as the driving force behind late Pleistocene musk ox (Ovibos moschatus) population dynamics. PNAS, 107, 5675–5680.

RH and HRS work on population genetics of large African mammals, with a special emphasis on inferring the demographic history of savannah adapted mammals in response to late Quaternary climate change and human activities. ABO works on population genetics and phylogeography of Australian marsupials, notably the Tasmanian devil.

Data accessibility

DNA sequences: GenBank accessions JQ235505–JQ235547; final partition alignments, sampling localities and BEAST input file (EBSP analysis; concatenated) uploaded as online supplementary material.

Supporting information

Additional supporting information may be found in the online version of this article.

- Fig. S1 Scenarios PopulationSizeChanges.
- Fig. S2 Skyline plot models compared.
- Fig. S3 mtgenome partitions skyline plots.
- Fig. S4 EBSPs from random subsamples of the complete data set.
- Fig. S5 Livestock population explosion.

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.